A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints
نویسندگان
چکیده
We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at (CVaR) measure. The algorithm processes independent and identically distributed samples from underlying uncertainty in an online fashion, produces $\eta/\sqrt{K}$-approximately feasible optimal point within $K$ iterations with constant step-size, $\eta$ increases tunable risk-parameters of CVaR. find optimized step sizes using our bounds precisely characterize computational cost aversion as revealed by growth $\eta$. Our proposed makes simple modification typical stochastic algorithm. With this mild change, analysis surprisingly obviates need for priori or complex adaptive bounding schemes dual variables assumed many prior works. also draw interesting parallels sample complexity that chance-constrained programs derived literature very different solution architecture.
منابع مشابه
Three steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملPortfolio Optimization with Conditional Value-at-risk Objective and Constraints
Recently, a new approach for optimization of Conditional Value-at-Risk (CVaR) was suggested and tested with several applications. For continuous distributions, CVaR is defined as the expected loss exceeding Value-at Risk (VaR). However, generally, CVaR is the weighted average of VaR and losses exceeding VaR. Central to the approach is an optimization technique for calculating VaR and optimizing...
متن کاملOptimization with Multivariate Conditional Value-at-Risk Constraints
For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to ...
متن کاملAccelerated portfolio optimization with conditional value-at-risk constraints using a cutting-plane method
Financial portfolios are often optimized for maximum profit while subject to a constraint formulated in terms of the Conditional Value-at-Risk (CVaR). This amounts to solving a linear problem. However, in its original formulation this linear problem has a very large number of linear constraints, too many to be enforced in practice. In the literature this is addressed by a reformulation of the p...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2021
ISSN: ['0022-3239', '1573-2878']
DOI: https://doi.org/10.1007/s10957-021-01888-x